SIGMA | MATH INFO – DATA MINING

Hallo sobatika! Selamat bertemu kembali dengan SIGMA di setiap malam minggu. 😊 Nah, kali ini kita akan membahas tentang Data Mining. Kuy kita kepoin! Penggalian data (bahasa Inggris: data mining) adalah ekstraksi pola yang menarik dari data dalam jumlah besar. Suatu pola dikatakan menarik apabila pola tersebut tidak sepele, implisit, tidak diketahui sebelumnya, dan berguna. Pola yang disajikan haruslah mudah dipahami, berlaku untuk data yang akan diprediksi dengan derajat kepastian tertentu, berguna, dan baru. Penggalian data memiliki beberapa nama alternatif, meskipun definisi eksaknya berbeda, seperti KDD (knowledge discovery in database), analisis pola, arkeologi data, pemanenan informasi, dan intelegensia bisnis. Penggalian data diperlukan saat data yang tersedia terlalu banyak (misalnya data yang diperoleh dari sistem basis data perusahaan, e-commerce, data saham, dan data bioinformatika), tetapi tidak tahu pola apa yang bisa didapatkan. Perkembangan yang pesat di bidang pengumpulan data dan teknologi penyimpanan di berbagai bidang, menghasilkan basis data yang terlampau besar. Namun, data yang dikumpulkan jarang dilihat lagi, karena terlalu panjang, membosankan, dan tidak menarik. Seringkali, keputusan -yang katanya berdasarkan data- dibuat tidak lagi berdasarkan data, melainkan dari intuisi para pembuat keputusan. Sehingga, lahirlah cabang ilmu penggalian data ini. Analisis data tanpa menggunakan otomasi dari penggalian data adalah tidak memungkinkan lagi, kalau 1) data terlalu banyak, 2) dimensionalitas data terlalu besar, 3) data terlalu kompleks untuk dianalisis manual (misalnya: data time series, data spatiotemporal, data multimedia, data streams). [Sumber : Wikipedia]

Leave a Comment

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *